TABLES OF ORTHOGONAL POLYNOMIALS WHEN THE INDEPENDENT VARIABLE ' x ' IS IN THE GEOMETRIC PROGRESSION:
 $$
x_{r}=2^{r-2} ; \quad x_{1}=0 ; \quad x_{r}=2^{r-1} ; \quad x_{1}=1
$$

By Daljit Singh
Indian Agricultural Research Institute, New Delhi
Tables for fitting orthogonal polynomials to data which is equispaced have been given by Fisher and Yates (1943) and Aitkin (1933). However, in certain biological and agronomic experiments the independent variable is in a geometric series. To meet this end the present set of tables has been worked out. The series with common ratio 2 has been given as such series are most widely used in biological research. While series with any other ratio could be considered and appropriate tables constructed, no simple relationship could be found to convert these polynomials in a geometric series from one common ratio to another. The present set of tables has been constructed from $n=3$ to 8 . For $n=3,4$ and 5 the polynomials up to 2 nd, 3 rd and 4 th degree have been given while for $n=6,7$ and 8 polyniomials up to the 3rd degree have been worked out. Two sets of tables are giventhe first having $x_{r}=2^{r-2} ; x_{1}=0$ and the second $x_{r}=2^{r-1} ; x_{1}=1$.

The equation to be fitted is

$$
\begin{equation*}
y=b_{0} Z_{0}+b_{1} Z_{1}+b_{2} Z_{2}+b_{3} Z_{3}+\ldots \tag{1}
\end{equation*}
$$

where Z_{p} is polynomial of the p-th degree in x and $\Sigma Z_{p} Z_{q}=0 ; p \neq q$; $Z_{0}=1$. The least square solutions of the $Z \mathrm{~s}$ are given by the equation:

$$
Z_{p}=\frac{1}{D^{(p-1)}}\left|\begin{array}{llll}
(0) & (1) & \ldots & (p) \tag{2}\\
(1) & (2) & \ldots & (p+1) \\
(p-1) & (p) & \ldots & (2 p-1) \\
1 & x & \ldots & x^{p}
\end{array}\right|
$$

where

$$
D^{(p-1)}=\left|\begin{array}{ll}
(0) & (1) \ldots(p-1) \\
(1) & (2) \ldots(p) \\
(p-1) & (p) \ldots(2 p-2)
\end{array}\right|
$$

and $\quad(r)=\Sigma x^{r}$.

Equation (2) may be finally expanded in the form

$$
\begin{equation*}
Z_{\mu}=\Sigma C_{p, p-s} x^{p-s} \tag{3}
\end{equation*}
$$

From (2) it is easy to see that the coefficient of x^{p} is $D^{(p-1)} / D^{(p-1)}$ $=1$. Therefore, $\mathrm{C}_{p, p}=1$.

Equation (2) may also be expressed as

$$
\begin{equation*}
Z_{p}=\frac{\left\{\sum_{s=0}^{p} d_{p, p-s} x^{p-s}\right\}}{d_{p, p}} \tag{4}
\end{equation*}
$$

where $d_{p, q}$ are relatively prime integers.
The $d \mathrm{~s}$ are given in Table II (a).
Let

$$
\begin{equation*}
Z^{\prime \prime}=\sum_{s=0}^{p} d_{p, p-s} x^{p-s} \tag{5}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
Z=\frac{Z^{\prime \prime}}{d_{p, p}} . \quad \text { Also } \quad C_{p, p-s}=\frac{d_{p, p-s}}{d_{p, p}} \tag{6}
\end{equation*}
$$

Giving values $0,1,2,4,8$, etc., to x in (5) tables for $Z^{\prime \prime}$ may be constructed. If R is the highest common factor of the numbers $Z^{\prime \prime}$ and $R Z^{\prime}=Z^{\prime \prime}$ then

$$
\begin{equation*}
Z=\frac{Z^{\prime \prime}}{d_{p, p}}=\frac{R}{d_{p, p}} Z^{\prime}=\frac{Z^{\prime}}{L} \tag{7}
\end{equation*}
$$

where

$$
L=d_{p, p} / R
$$

Corresponding to (1) we have also the equation

$$
\begin{equation*}
y=b_{0}{ }^{\prime} Z_{0}{ }^{\prime}+b_{1}{ }^{\prime} Z_{1}{ }^{\prime}+b_{2}{ }^{\prime} Z_{2}{ }^{\prime}+b_{3}{ }^{\prime} Z_{3}^{\prime}+\ldots \tag{8}
\end{equation*}
$$

for which the least square solution of b^{\prime} is given by $b^{\prime}=\Sigma y Z^{\prime} \mid \Sigma Z^{\prime 2}$ corresponding to the solution $b=\Sigma y Z \mid \Sigma Z^{2}$ of (1). Also $b=L b^{\prime}$.

Table $\mathrm{I}(a)$ gives the values of Z^{\prime} and other constants required for working out the b values corresponding to (1). The essential arrangement of each table is along the lines of Fisher and Yates' Tables. Against each x are given the numbers Z^{\prime}; next the values of $\Sigma Z^{\prime 2}$ followed by those of L. From these any b is found by the relation

$$
\begin{equation*}
b=\frac{L \Sigma y Z^{\prime}}{\Sigma Z^{\prime 2}} \tag{9}
\end{equation*}
$$

The sum of squares due to fitting b is equal to $\left\{\Sigma y Z^{\prime}\right\}^{2} / \Sigma Z^{\prime 2}$. If S^{2} is an estimate of the standard deviation the standard error of b is equal to $L S / \sqrt{Z^{\prime 2}}$.

The computation of the tables of orthogonal polynomials when $x_{1}=1$ may be similarly done. However, a considerable amount of labour may be saved by adopting the following procedure which utilizes some of the determinants used in constriction of tables when $x_{1}=0$. Let

$$
W_{r}=\left|\begin{array}{ll}
(0) & (1) \ldots(r) \tag{10}\\
(1) & (2) \ldots(r+1) \\
(r-1) & (r) \ldots(2 r-1) \\
1 & x
\end{array}\right|=\sum_{s=0}^{r} f_{r, r-s} x^{r-s}
$$

It can be seen that

$$
f_{r, t}=(-1)^{r-t}\left|\begin{array}{lllll}
(0) & (1) & \ldots(t-1) & (t+1) & \ldots(r) \tag{11}\\
(1) & (2) & \ldots(t) & (t+2) & \ldots(r+1) \\
(r-1) & (r) \ldots(t+r-2) & (t+\dot{r}) & \ldots(2 r-1)
\end{array}\right|
$$

Denote the determinant in equation (11) by

$$
[(0)(1) \ldots(t-1) \quad(t+1) \ldots(r)] .
$$

Then

$$
\begin{equation*}
f_{r, t}=(-1)^{:-t} \quad[(0) \quad(1) \ldots(t-1) \quad(t+1) \ldots(r)] \tag{12}
\end{equation*}
$$

Now the value of $(s), s \neq 0$ when $x_{1}=0$ and the number of variates $=n$ is the same as the value of (s) with $x_{1}=1$ and the number of variates $=n-1$. Let $(\dot{s}), \dot{W}_{r}$ and \dot{f} be the functions with $x_{1}=1$ and the number of values $=n-1$ corresponding to (s), W_{r} and f with $x_{1}=0$ and number of variates $=n$. Then we have

$$
\begin{align*}
& (0)-(\dot{0})=1 \tag{13}\\
& \dot{W}_{r}=\sum_{s=0}^{r} \dot{f_{r, r}-s} x^{r-s} \tag{14}\\
& f_{r, t}^{\cdot}=(-1)^{r-t}[(0)(1) \ldots(t-1)(t+1) \ldots(r)] \tag{15}
\end{align*}
$$

If a is any diagonal element of a determinant A we have the value of A given by

$$
\begin{equation*}
A=a\left|A_{a}\right|+\Sigma b\left|A_{b}\right| \tag{16}
\end{equation*}
$$

where A_{a} is the minor of a and $\left|A_{b}\right|$ the co-factor of b-the summation extending over the remaining elements b in the column (or row) containing a.

If a is replaced by \dot{a} while other elements are left undisturbed we have

$$
\begin{equation*}
\dot{A}=\dot{a}\left|A_{a}\right|+\Sigma b\left|A_{\imath}\right| \tag{17}
\end{equation*}
$$

by virtue of the fact that the minor of \dot{a} is the same as that of a. Hence from equations (16) and (17) we get

$$
\begin{equation*}
\dot{A}=A+(\dot{a}-a) A_{a} \tag{18}
\end{equation*}
$$

Using (18) in (12) and (15) we get

$$
\begin{equation*}
\dot{f_{r, t}}=f_{r, t}+(-1)^{r-t}\{(\dot{0})-(0)\}[(2)(3) \ldots(t)(t+2) \ldots(r+1)] . \tag{19}
\end{equation*}
$$

Applying (13) and (14) we finally get

$$
\begin{equation*}
\dot{f_{r, t}}=f_{r, t}+(-1)^{r-t+1} \quad[(2)(3) \ldots(t)(t+2) \ldots(r+1)] . \tag{20}
\end{equation*}
$$

Knowing $f_{r, t}$ and the determinants of lower order not involving the element (0), it is possible to calculate the \dot{f} coefficients of (15). Thereafter, the procedure is the same as that for the computation of orthogonal polynomials when $x_{1}=0$. Tables I (b) and II (b) are the tables corresponding to Tables I (a) and II (a) when $x_{1}=0$.

Example

In an agronomic experiment three doses of superphosphate, viz., 16,32 and 64 lb . were applied to berseem and the yield figures of fodder in lb . for totals of six plots were as follows:-

\cdots	Doses of super (t)	Yield in 1 b . (y)	
	Control (No manure)	1,016	
	16 lb .	2,967	
\cdots	32 lb .	4,202	-
	64 lb .	5,245	.
\therefore			\therefore

By dividing the doses by 16 we obtain the relation

$$
\begin{equation*}
x=\frac{t}{16} . \tag{21}
\end{equation*}
$$

The polynomial to be fitted is

$$
\begin{equation*}
y=A_{0}+A_{1} t+A_{2} t^{2}+A_{3} t^{3} \tag{22}
\end{equation*}
$$

while in terms of x the polynomial is

$$
\begin{equation*}
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} . \tag{23}
\end{equation*}
$$

We now refer to Table $\bar{i}(a)$ for $n=4$: The product-moments $\Sigma y z^{\prime}, b^{\prime}$ and other quantities are given in the table below:

Degree of fitting	$\Sigma y Z^{\prime}$	$b^{\prime}=\frac{\Sigma y Z^{\prime}}{\Sigma Z^{\prime 2}}$	$L=4$ b $=L b^{\prime}$ $=4 b^{\prime}$	$S S$ due to b $=\frac{\left(\Sigma y Z^{\prime}\right)^{2}}{\Sigma Z^{\prime 2}}$
0	1,3430	$3357 \cdot 5000,000$	$3357 \cdot 5000,000$	$4509,1225 \cdot 00$
1	3,5394	$252 \cdot 8142,857$	$1011 \cdot 2571,429$	$894,8108 \cdot 83$
2	$-1,2147$	$-78 \cdot 8766,234$	$-276 \cdot 0681,818$	$95,8114 \cdot 34$
3	721	$6 \cdot 5545,455$	$30 \cdot 0416,667$	$4725 \cdot 83$
	Total of $S S$ due to b	\ldots	$5500,2174 \cdot 00$	

Also $\Sigma y^{2}=5500,2174$. This agrees with the total of $S S$ due to b.
Using equations (3) and (6) in (1) and by equating coefficients of like powers of x we get from (23)

$$
\begin{align*}
a_{0} & =b_{3} C_{3,0}+b_{2} C_{2,0}+b_{1} C_{1,0}+b_{0} C_{0}, 0 \\
& =b_{3}\left(\frac{d_{3,0}}{d_{3,3}}\right)+b_{2}\left(\frac{d_{2,0}}{d_{2,2}}\right)+b_{1}\left(\frac{d_{1,0}}{d_{1,1}}\right)+b_{0}\left(\frac{d_{0,0}}{d_{0,0}}\right) \tag{24}\\
a_{1} & =b_{3} C_{3,1}+b_{2} C_{2,1}+b_{1} C_{1,1} \\
& =b_{3}\left(\frac{d_{3,1}}{d_{3,3}}\right)+b_{2}\left(\frac{d_{2,1}}{d_{2,2}}\right)+b_{1}\left(\frac{d_{1,1}}{d_{1,1}}\right) \tag{25}\\
a_{2} & =b_{3} C_{3,2}+b_{2} C_{2,2} \\
& =b_{3}\left(\frac{d_{3,2}}{d_{3,3}}\right)+b_{2}\left(\frac{d_{2,2}}{d_{2,2}}\right) \tag{26}
\end{align*}
$$

$$
\begin{align*}
a_{3} & =b_{3} C_{3,3} \\
& =b_{3}\left(\frac{d_{3,3}}{d_{3,3}}\right) \tag{27}
\end{align*}
$$

Substituting the values of b_{3}, b_{2}, b_{1} and b_{0} and the d values corresponding to $n=4$ from Table II (a) in (24) we get

$$
\begin{aligned}
a_{0}= & (30 \cdot 0417)\left(\frac{-36}{55}\right)-(276 \cdot 0682)\left(\frac{14}{7}\right) \\
& +(1011 \cdot 2571)\left(\frac{-7}{4}\right)+(3357 \cdot 5000) \cdot\left(\frac{1}{1}\right) \\
= & 1016 \cdot 0000 .
\end{aligned}
$$

Similarly we get

$$
a_{1}=2369 \cdot 0833, \quad a_{2}=-448 \cdot 1250, \quad a_{3}=30 \cdot 0417
$$

From (21), (22) and (23) we get

$$
\begin{equation*}
A_{0}=a_{0}, \quad A_{1}=\frac{a_{1}}{16}, \quad A_{2}=\frac{a_{2}}{256}, \quad A_{3}=\frac{a_{3}}{4096} . \tag{28}
\end{equation*}
$$

Using the values of a_{0}, a_{1}, etc., in (28) we get

$$
\begin{aligned}
& A_{0}=1016 \cdot 0000, \quad A_{1}=\frac{2369 \cdot 0833}{16}=148 \cdot 0677 \\
& A_{2}=\frac{-448 \cdot 1250}{256}=-1 \cdot 7505, \quad A_{3}=\frac{30 \cdot 0417}{4096}=0.007334
\end{aligned}
$$

Finally we have the relation

$$
y=1016 \cdot 0000+148 \cdot 0677 t-1 \cdot 7505 t^{2}+0.007334 t^{3}
$$

Summary

In some biological, biochemical and agronomic experiments quantitative observations are taken on the effect of certain chemicals where the doses are given at intervals which proceed in geometric series of the type 2^{r} rather than in arithmetic progression. Two sets of tables for fitting orthogonal polynomials to such data have been constructedthe first including the control $\left(x_{1}=0\right)$ and the second without the control $\left(x_{1}=1\right)$. The range of the tables considered is from $n=3$ to 8 . For $n=3,4$ and 5 polynomial constants up to 2 nd, 3 rd and 4 th degree and for $n=6,7$ and 8 polynomial constants up to the 3rd degree have been constructed. The arrangement of these polynomial constants is similar to that given by Fisher and Yates.

A method has been evolved which considerably decreases the computational work of constructing the second set of polynomials ($x_{1}=1$) by utilizing values obtained in the construction of the first set of polynomials $\left(x_{1}=0\right)$.

Acknowledgement

The author is thankful to Dr. P. N. Saxena and Shri M. N. Das for their helpful suggestions in the preparation of this paper.

References

1. Aitken, A. C. .. "On the graduation of data by the orthogonal polyromials of least squares," Proc. Roy. Soc. Edin., 1933, 53, 54.
2. Fisher, R. A. and Yates, F .

Statistical Tables for Biological, Agricultural and Med.cal Research, Oliver \& Boyd, Edinburgh, 1943.

Table I (a)
Orthogonal Polynomials ($x_{1}=0$)
(3)

(4)

x	$Z_{1}{ }^{\prime}$	$Z_{2}{ }^{\prime}$	Z_{3}^{\prime}
0	-7	+7	-3
1	-3	-4	+8
2	+1	-8	-6
4	+9	+5	+1
$\Sigma Z^{\prime 2}$	140	154	110
L	4	$7 / 2$	$55 / 12$

(5)

x	$Z_{1}{ }^{\prime}$	$Z_{2}{ }^{\prime}$	$Z_{3}{ }^{\prime}$	$Z_{4}{ }^{\prime}$
0	-3	$+31$	- 837	+21
1	-2	+ 2	+ 752	-64
2	-1	-19	+ 916	+56
4	$+1$	-37	- 1016	-14
8	$+5$	+23	+ 185	+1
$\Sigma Z^{\prime 2}$	40	3224	317,1610	7870
L	1	4	2015/24	3935,672

(6)

x	$Z_{1}{ }^{\prime}$	$Z_{2}{ }^{\prime}$	$Z_{3}{ }^{\prime}$
0	-31	+93	$-3,5433$
1	-25	+40	$+4,400$
2	-19	-	6
4	-7	-77	$+2,078$
8	+17	-135	$+3,5289$ 16$+65$
$\Sigma 85$	+7295		
$\Sigma Z^{\prime 2}$	6510	4,1664	$49,4991,1360$
L	6	$7 / 2$	$1240 / 3$

(7)

x	$Z_{1}{ }^{\prime}$	$Z_{2}{ }^{\prime}$	$Z_{3}{ }^{\prime}$
0	-9	$+1,1811$	
1	-8	+7750	$-180,7083$
2	-7	+3955	$-54,9568$
4	-5	-2837	$+45,1768$
8	-1	$-1,3229$	$+175,7730$
16	+7	$-2,1245$	$+208,5603$
32	+23	$+1,3795$	$+237,2543$
$\Sigma Z^{\prime 2}$	798	$10,3991,1306$	$17,0284,1992,7344$
L	1	133	$7,1827 / 24$

(8)

Table I (b)
Orthogonal Polynomials $\left(x_{1}=1\right)$
(3)

x	Z_{1}^{\prime}	Z_{2}^{\prime}
1	-4	+2
2	-1	-3
4	+5	+1
$\Sigma Z^{\prime 2}$	42	14
L	3	$7 / 3$

(4)

x	Z_{1}^{\prime}	$Z_{2}{ }^{\prime}$	$Z_{3}{ }^{\prime}$
1	-11	+20	-8
2	-7	-4	+14
4	+1	-29	-7
8	+17	+13	+1
$\Sigma Z^{\prime 2}$	460	1426	310
L	4	$23 / 6$	$155 / 84$

(6)

x	$Z_{1}{ }^{\prime}$	$Z_{2}{ }^{\prime}$	$Z_{3}{ }^{\prime}$
1	-19	+ 6696	-1,4632
2	-17	± 4362	- 3194
4	-13	+ 163	+1,2594
8	- 5	- 6359	+2,0463
16	+11	- 1,1899	-1,8317
32	+43	+ 7037	+ 3131
$\begin{gathered} \Sigma Z_{K}^{\prime 2} \\ \end{gathered}$	2814 2	$\begin{array}{r} 2,9543,2480 \\ 469 / 6 \end{array}$	$\begin{array}{r} 11,4582,4480 \\ 620 / 21 \end{array}$

(5)

x	$Z_{1}{ }^{\prime}$	$Z_{2}{ }^{\prime}$	$Z_{3}{ }^{\prime}$	$Z_{4}{ }^{\prime}$
1	-26	+30	-176	+64
2	-21	+11	+76	-120
4	-11	-19	+252	+70
8	+9	-47	-181	-15
16	+49	+25	+29	+1
$\Sigma Z^{\prime 2}$	1319	4216	13,3858	2,3622
L	5	$4 / 3$	$527 / 168$	$3937 / 3360$

(7)

x	Z_{1}^{\prime}		Z_{2}^{\prime}
		Z_{3}^{\prime}	
1	-120	+2994	$-1,5168$
2	-113	+2409	-8536
4	-99	+1297	+2678
8	-71	-695	$+1,7577$
16	-15	-3751	$+2,2627$
32	+97	-6151	$-2,3321$
64	+321	+3897	+4143
$\Sigma Z^{\prime 2}$	15,4688	8402,3962	$16,9206,8752$
L	7	$29 / 3$	$671 / 168$

(8)

Table II (a)
' d ' Coefficients in the Relation $Z_{r}{ }^{\prime \prime}=\sum_{s=0}^{r} d_{r, r-s} x^{r-s}$

$$
\left(x_{1}=0\right)
$$

		(3)	(4)	(5)	(6)	(7)	(8)
$Z_{1}{ }^{\prime \prime}$	$a_{1}, 1$ d_{1}, 0	1 -1	4 -7	1 -3	6 -31	- $\begin{array}{r}1 \\ -9\end{array}$	$\begin{array}{r} \\ \therefore \\ \hline-127\end{array}$
$22^{\prime \prime}$	d_{2}, $d_{2}, 1$ $d_{2}, 0$	3 -6 1	7 -29 14	4 -33 -31	7 -113 186	$\begin{array}{r} 133 \\ -4194 \\ \mathrm{I}, 181 \mathrm{I} \end{array}$	$\begin{array}{r} 217 \\ -1,3411 \\ 6,4770 \end{array}$
$Z_{3}^{\prime \prime}$	$\begin{aligned} & d_{3}, 3 \\ & d_{3}, 2 \\ & d_{3}, 1 \\ & d_{3}, 0 \end{aligned}$	\because \square \square \square	$\begin{array}{r} 55 \\ -315 \\ 392 \\ -36 \end{array}$	$\begin{array}{r} 2015 \\ -2,3145 \\ 5,9266 \\ -2,0088 \end{array}$	$\begin{array}{r} 2480 \\ -5,7105 \\ 29,4823 \\ -21,2598 \end{array}$	$\begin{array}{r} 7,1827 \\ -328,9629 \\ 3339,8162 \\ -4336,9992 \end{array}$	$\begin{array}{r} 4231 \\ -38,4507 \\ 762,5096 \\ -1702,1556 \end{array}$
$Z_{4}^{\prime \prime}$	$\begin{aligned} & d_{4}, 4 \\ & d_{4}, 3 \\ & d_{4}, 2 \\ & d_{4}, 1 \\ & d_{4}, 0 \end{aligned}$	\because \because \square \square \square	\square \square \square \square	$\begin{array}{r} 3935 \\ -5,3445 \\ 20,1670 \\ -20,9280 \\ 1,4112 \end{array}$	\because \cdots \cdots . 	\ldots	\cdots

Table II (b)
' d ' Coefficients in the Relation $Z_{r}{ }^{\prime \prime}=\sum_{s=0}^{r} d_{r, r-s} x^{r-s}$.

$$
\left(x_{1}=1\right)
$$

	(3)	(4)	(5)	(6)	(7)	(8)

